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vacuum expectation values of pseudomoduli at loop level. As a complement of the recent

result by Shih, we show that there must be a field in the theory with R-charge different

from zero and two in order for R-symmetry breaking to occur, no matter whether the

breaking happens at tree or loop level. We review the example by CDFM, and construct

two types of tree level R-symmetry breaking models with a wide range of parameters and

free of runaway problem. And the R-symmetry is broken everywhere on the pseudomoduli

space in these models. This provides a rich set of candidates for SUSY model building and

phenomenology.
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1. Introduction

O’Raifeartaigh models of spontaneous supersymmetry breaking [1, 2] have recently received

much interest in low-energy SUSY model building. In these studies, R-symmetries play im-

portant roles due to its relation to SUSY breaking [3, 4], known as Nelson-Seiberg theorem.

For a generic model without fine tuning, a U(1) R-symmetry for the superpotential is a

necessary and sufficient condition for SUSY breaking. The R-symmetry needs to be broken

to have non-zero Majorana gaugino masses. In many O’Raifeartaigh’s models considered

to date, the R-symmetry is spontaneously broken by the pseudomodulus which exists in

any non-SUSY vacuum from Wess-Zumino models with minimal Kähler potential [5, 6].

To have this happen, the one-loop Coleman-Weinberg potential [7] has to stabilize the

pseudomodulus at some non-zero value, which requires that there must be a field in the

theory with R-charge different from 0 or 2. This result of R-charge assignment is derived

recently by Shih [8] which is based on the following assumptions:

Assumption 1. The R-symmetry is broken by the vacuum expectation value of the pseu-

domodulus. Coleman-Weinberg potential must give a negative mass to the pseudomodulus

in order to stabilize it at some non-zero value.

Assumption 2. Other fields all have zero vacuum expectation values.

Although most models studied up to date satisfy these assumptions, one exception

has been observed in [9]. It violates both assumptions here: Some fields other than the

pseudomoduli acquire non-zero vacuum expectation values at tree level and break the

R-symmetry. The purpose of this paper is to investigate such models in general with

tree level spontaneous R-symmetry breaking. We find these models share the same R-

charge assignment property of Shih’s result for models with one-loop R-symmetry breaking:

there must be a field in the theory with R-charge different from 0 or 2. This serves as a
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complement of Shih’s result: The same requirement for R-charge assignment has to be

satisfied, no matter whether the R-symmetry is broken at tree or loop level.

The model of [9] (CDFM model) requires an extra Z2 symmetry to avoid the existence

of runaway which is very common in O’Raifeartaigh models [10]. The role of the extra

symmetry can also be played by more complicated R-charge assignment. We propose two

of such models which also have tree level R-symmetry breaking but do not need extra

symmetries. The R-symmetry is broken everywhere on the pseudomoduli space, which

makes a clear distinction between these models and Shih’s type. All these models have

wide ranges of parameters, which provide a rich set of candidates for the study of model

building and phenomenology.

The outline of the paper is as follows. In section 2 we point out that it is possible

to dissatisfy assumption 2: The vacuum does not need to coincide the R-invariant point.

In section 3 we prove the R-charge assignment requirement for tree level R-symmetry

breaking: Some field with R-charge different from 0 or 2 is required. In section 4 we

discuss the problem of runaway and the way to avoid it. In section 5 we review the model

from [9]. In section 6 we propose two types of tree level R-symmetry breaking models

without the need of extra symmetries to avoid runaway.

2. Vacuum expectation values of fields

One fact which is often overlooked is that the field values at the vacuum are not necessarily

zero. Although it is convenient to make a field redefinition so that the vacuum is set at

the origin, such redefinition, which involves translations, also moves the invariant point

of the R-symmetry. Then the origin after the redefinition is not necessarily R-invariant.

Alternatively, one can keep the R-invariance of the origin of the field space so that the

R-symmetry transformation can always be written as a simple rotation around the origin.

But then vacuum expectation values of fields are not necessarily zero. So it is possible to

break the R-symmetry at tree level if these fields with non-zero vacuum expectation values

have non-zero R-charges.

One related result is that not every field needs an explicit mass term to be stabilized.

Mass terms can be generated by the non-zero vacuum expectation values of fields. So the

superpotential W may have only linear and cubic terms for some fields. Realizing this

gives more freedom on model building: Not every field with R-charge q needs a partner

with R-charge 2 − q to form an explicit mass term.

3. R-charge assignment condition

We are to prove the requirement for R-charge assignment for tree level R-symmetry break-

ing. If there are only R-charge 2 fields Xi, i = 1, . . . , dX and R-charge 0 fields YJ ,

J = 1, . . . , dY , the superpotential can be written as

W =
∑

i

Xifi(YJ) (3.1)
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where fi are polynomial functions of R-neutral fields YJ . If we constrain our consideration

to renormalizable theories, fi can only have up to quadratic terms. But our following proof

also applies to non-renormalizable superpotentials. The field strength is

∂iW = fi(YJ), ∂IW =
∑

i

Xi∂Ifi(YJ) . (3.2)

We need to minimize the scalar potential

V =
∑

i

|fi(YJ)|2 +
∑

I

∣

∣

∣

∣

∑

i

Xi∂Ifi(YJ)

∣

∣

∣

∣

2

. (3.3)

The second term in the expression of V must vanish at the vacuum. If it does not

vanish, i.e. there is a local minimum at (X
(0)
i , Y

(0)
J ) so that

V (0) =
∑

i

|fi(Y
(0)
J )|2 +

∑

I

∣

∣

∣

∣

∑

i

X
(0)
i ∂Ifi(Y

(0)
J )

∣

∣

∣

∣

2

= V0 + V1, V1 > 0 , (3.4)

X
(0)
i must not be all zero, otherwise V1 will vanish. Consider the field subspace

(Xi, YJ)(c) = (cX
(0)
i , Y

(0)
J ), c ∈ C . (3.5)

On this subspace we have

V (c) = V (cX
(0)
i , Y

(0)
J ) = V0 + |c|2V1 (3.6)

and V (1) = V (0). The derivative ∂cV = c∗V1 is non-zero at c = 1, which contradict

the assumption that (X
(0)
i , Y

(0)
J ) is a metastable vacuum. So we see V1 must vanish at

the vacuum.

There are two ways to make V1 = 0: If Xi = 0, they do not break the R-symmetry.

R-neutral fields YJ , even if they have non-zero vacuum expactation values, also do not

break the R-symmetry. So the R-symmetry is preserved. If Xi 6= 0, ∂Ifi(YJ) take some

special values so that the combination to V1 vanishes. Then some combination of Xi is a

pseudomodulus. One way to see this is to define a subspace like (3.5), then c labels the flat

direction. The R-symmetry is broken on the pseudomoduli space except at the origin. One

needs to do one-loop computation to determine where the pseudomodulous is stabilized.

So it falls into the scope of Shih’s result [8]. In this case whether the R-symmetry is broken

or not is undetermined at tree level.

When there are fields with R-charges other than 2 and 0, one may redefine fields

following the step of the proof of Nelson-Seiberg theorem [4] and make the superpotential

has the form of (3.1). But the redefinition is singular at the origin, and also makes the

Kähler potential non-minimal. So the scalar potential is more complicated and we can’t

make the above argument.

Another way to see R-charge 2 fields can not break the R-symmetry at tree level is

to consider the complexification of the symmetry group as done in [6]. The R-symmetry

rotates fields as well as the superpotential, and also the SUSY breaking field strength:

∂iW → ei(2−qi)α∂iW, α ∈ R . (3.7)
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When the R-charge qi = 2, ∂iW is invariant under the R-symmetry even if α is taken to be

complex. For R-charge qi = 0 fields, the corresponding field strength components vanish

according to the first step of the previous proof. So the scalar potential V is also invariant

under the complexified R-symmetry. If some R-charge 2 fields have non-zero values at the

vacuum, the complexified R-symmetry makes a whole complex plane as a pseudomoduli

space. So one needs to consider one-loop correction to stabilize the pseudomodulus. At

tree level one can not determine whether R-symmetry is broken or not.

We have proved that the R-symmetry can not be broken (or it is undetermined) at

tree level if there are only R-charge 0 and 2 fields. Combining Shih’s result [8] with our

proof, we have the conclusion:

Theorem 1. There must be a field in the theory with R-charge different from 0 and 2 in

order for R-symmetry breaking to occur, no matter whether the breaking happens at tree or

loop level.

On the other hand, one can build tree level spontaneous R-symmetry breaking models

which contain fields with R-charges other than 0 and 2. One apparent distinction between

these models and Shih’s type is that whether there is any R-symmetry preserving point on

the pseudomoduli space. In the tree level breaking case, the breaking happens everywhere

on the pseudomoduli space. So whatever one-loop computation is, the R-symmetry is

always broken. We are to show such examples in later sections.

4. The problem of runaway

Before building any tree level R-symmetry breaking model, we would like to look into a

common feature in O’Raifeartaigh models: runaway directions, where SUSY is asymptot-

ically restored as some fields approaching infinity. Having runaway directions may not

always be a problem, since the matastable vacuum may still have a long lifetime against

quantum tunneling to runaway, or quantum corrections may stabilize the fields at finite

values. Even though, it is still worthwhile to know the condition of avoiding runaway

which gives an alternative way of model building. Runaway directions are usually related

to R-symmetries. Here we are to summarize the result from [9, 10]. The field strength

transforms under the R-symmetry as (3.7). We categorize the SUSY equations according

to their R-charges:

∂iW = 0,















qi > 2, R(∂iW ) < 0

qi = 2, R(∂iW ) = 0

qi < 2, R(∂iW ) > 0

. (4.1)

If all equations can be satisfied simultaneously, one gets a SUSY vacuum, otherwise the

model has only non-SUSY vacua. If one can just satisfy the qi ≥ 2 equations, the complex-

ified R-transformation zi → zie
qiα does not affect these equations. Taking α → −∞, the

qi < 2 equations are also satisfied at the limit, so it is a SUSY runaway direction. Similarly,

if one can satisfy the qi ≤ 2 equations, then α → ∞ will be a SUSY runaway direction.

In both cases, generically the number of equations which need to be satisfied is less than
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the number of variables, and the solution exists. To avoid runaway, one needs to consider

some non-generic model so that these equations can not be satisfied, i.e.:

Theorem 2. A necessary condition to avoid runaway is that the subset of equations ∂iW =

0 with qi ≥ 2 can not be satisfied, and the subset with qi ≤ 2 also can not be satisfied.

We will see examples with or without runaway in the following sections. One should

notice that here we only give a necessary condition. It is a sufficient condition to avoid

only the specific type of runaway which is related to the R-symmetry. Even if they are

satisfied, one still needs to be careful about the existence of other types of runaway.

5. Review of CDFM model

An example of tree level R-symmetry breaking, CDFM model, has been observed in [9].

Here we are to review its vacuum structure which is very similar to our models in the next

section. The original model has five chiral fields and the superpotential

W = λz1(z4z5 − m2) + µz2z4 + νz3z5 + σz3
5 . (5.1)

The R-charge assignment for z1, . . . , z5 is:

q1 = 2, q2 = 8/3, q3 = 4/3, q4 = −2/3, q5 = 2/3 . (5.2)

The components of the SUSY breaking field strength

∂1W = λ(z4z5 − m2), ∂2W = µz4, ∂3W = νz5,

∂4W = λz1z5 + µz2, ∂5W = λz1z4 + νz3 + 3σz2
5

(5.3)

can not be set to zero simultaneously, so there is no SUSY vacuum for this model. We

need to minimize the potential

V = |λ|2|z4z5 −m2|2 + |µ|2|z4|2 + |ν|2|z5|2 + |λz1z5 + µz2|2 + |λz1z4 + νz3 + 3σz2
5 |2 . (5.4)

By field redefinition by phases, all coefficients can be made real and non-negative. Assuming

they are positive and satisfy

µν < λ2m2 , (5.5)

the non-SUSY vacuum satisfies

|µz4| = |νz5|, z4z5 = m2 − µν

λ2
, λz1z5 + µz2 = 0, λz1z4 + νz3 + 3σz2

5 = 0 . (5.6)

There is also another extremum of V where z1 is the pseudomodulus and z2, . . . , z5 are set

to zero, but it has higher V . The solution we provide above is actually the global minimum

of the potential. z4, z5 have non-zero vacuum expectation values

z4 = νreiθ, z5 = µre−iθ, θ ∈ R, r =

√

m2

µν
− 1

λ2
. (5.7)
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The R-symmetry is spontaneously broken by the non-zero r and the R-axion is labeled

by θ. The pseudomodulus from the theorem of [5, 6] is

z′1 = A−1(z1 − λrz2e
−iθ − λrz3e

iθ), A =

√

2λ2m2

µν
− 1 (5.8)

which should be viewed as a linear redefinition of z1, z2, z3 with θ fixed. So the total pseu-

domoduli space is of real dimension 3: 2 from the theorem of [5, 6] and 1 from the R-axion.

The R-symmetry is spontaneously broken everywhere on the 3-dimensional pseudomoduli

space. Loop corrections will further stabilize the value of z′1.

The first three equations of (5.3) meet the necessary condition of avoiding runaway

which we discussed in the previous section. Also there is no other type of runaway direction

in this model. However, as already pointed out in [9]. The R-symmetry allows another

term for W :

δW = ǫz2
3z4 (5.9)

which introduces the problem of runaway:

z1 =

(

ν2m2

2λǫ
− 3σm4

λ

)

e3α, z2 =

(

3σm6

µ
− 3ν2m4

4µǫ

)

e4α,

z3 = −νm2

2ǫ
e2α, z4 = e−α, z5 = m2eα, α → ∞ .

(5.10)

This flaw can be fixed by adding a field z6 with R-charge q6 = 2/3, and introducing an

extra Z2 symmetry under which z1, z6 are even and other fields are odd. The superpotential

is taken to be

W = λz1(z4z5 − m2) + µz2z4 + νz3z5 + τz2
5z6 + σz3

6 . (5.11)

No other renormalizable term is allowed by the symmetries. So the problem of runaway is

avoided. This model has similar vacuum spectrum as the previous one: SUSY and the R-

symmetry are spontaneously broken everywhere on the 3-dimensional pseudomoduli space.

6. Models without extra symmetries

Although extra symmetries in the hidden sector like the Z2 in CDFM model may not be

a problem for realistic model building, we would like to seek models with similar vacuum

spectrum which do not depend on the extra symmetry. This may give more freedom for

model building. The purpose of the extra symmetry is to prevent extra terms which may

introduce the problem of runaway. One may explore more complicated R-charge assignment

to serve the same purpose, as we are to do in this section.

We propose two types of models which have 7 chiral fields and the superpotential

W = W0 + W1 = λz1(z4z5 − m2) + µz2z4 + νz3z5 + W1(z4, . . . , z7) . (6.1)

The R-charge assignment is

q1 = 2, q2 = 2 + q, q3 = 2 − q, q4 = −q, q5 = q, q6 = 2 − 2q, q7 = 3q . (6.2)

– 6 –
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The form of W0 ensures SUSY breaking and R-symmetry breaking by granting vacuum

expectation values to z4 and z5 in a similar way as CDFM model does. And W1 contains

all other renormalizable terms which are allowed by the R-symmetry. The two types of

models, which have different values of q, are named after the form of the last term of W1

which uniquely determines the R-charges of all fields.

1. The Mz2 model: q = 1/3. The extra terms in W1 are

W1 = az2
5z6 + bz4z6z7 + Mz2

7 . (6.3)

And the R-charge assignment (6.2) is

q1 = 2, q2 = 7/3, q3 = 5/3, q4 = −1/3, q5 = 1/3, q6 = 4/3, q7 = 1 .

(6.4)

2. The σz3 model: q = 2/9. The extra terms in W1 are

W1 = az2
5z6 + bz4z6z7 + σz3

7 . (6.5)

And the R-charge assignment (6.2) is

q1 = 2, q2 = 20/9, q3 = 16/9, q4 = −2/9, q5 = 2/9, q6 = 14/9, q7 = 2/3 .

(6.6)

In both models, W1 does not depend on z1, . . . , z3. And W0 have the same form as part

of the superpotential in CDFM model. So the following solution also has many similarities

as the solution of CDFM model. The SUSY breaking field strength is

∂1W = λ(z4z5 − m2), ∂2W = µz4, ∂3W = νz5,

∂4W = λz1z5 + µz2 + bz6z7, ∂5W = λz1z4 + νz3 + 2az5z6,

∂6W = az2
5 + bz4z7, ∂7W =

{

bz4z6 + 2Mz7, for the Mz2 Model

bz4z6 + 3σz2
7 , for the σz3 Model

.

(6.7)

The first three components can not be set to zero simultaneously, so there is no SUSY

vacuum for this model. We need to minimize the potential

V = |λ|2|z4z5 − m2|2 + |µ|2|z4|2 + |ν|2|z5|2 + . . . . (6.8)

By field redefinition by phases, all coefficients can be made real and non-negative. Assuming

they are positive and satisfy

µν < λ2m2 , (6.9)

the non-SUSY vacuum satisfies

|µz4| = |νz5|, z4z5 = m2 − µν

λ2
, ∂iW = 0, i = 4, . . . , 7 . (6.10)

There is also another extremum of V where z1 is the pseudomodulus and all other fields

are set to zero. But it has higher V . The solution we provide above is actually the global

– 7 –
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minimum of the potential. Our class of models also have no runaway direction. z4, z5 have

non-zero vacuum expectation values

z4 = νreiθ, z5 = µre−iθ, θ ∈ R, r =

√

m2

µν
− 1

λ2
. (6.11)

The R-symmetry is spontaneously broken by the non-zero r and the R-axion is labeled

by θ. The pseudomodulus from the theorem of [5, 6] is

z′1 = A−1(z1 − λrz2e
−iθ − λrz3e

iθ), A =

√

2λ2m2

µν
− 1 (6.12)

which should be viewed as a linear redefinition of z1, z2, z3 with θ fixed. So the total

degeneracy space is of real dimension 3: 2 from the theorem of [5, 6] and 1 from the R-axion.

The R-symmetry is spontaneously broken everywhere on the 3-dimensional pseudomoduli

space. Loop corrections will further stabilize the value of z′1. All other field values can be

expressed in terms of the R-axion θ by solving (6.10). For the Mz2 model, the vacuum

can be described by (6.11), (6.12) and

z′2 = B−1

(

λrz1e
−iθ + z2 −

2Ma2µ3

b2ν3
re−7iθ

)

= 0,

z′3 = B−1

(

λrz1e
iθ + z3 +

4Ma2µ3

b2ν3
re−5iθ

)

= 0,



















B =
λm√
µν

,

z6 =
2Maµ2

b2ν2
e−4iθ, z7 = −aµ2

bν
re−3iθ .

(6.13)

For the σz3 model, the vacuum can be described by (6.11), (6.12) and

z′2 = B−1

(

λrz1e
−iθ + z2 +

3σa3µ5

b3ν4
r2e−10iθ

)

= 0,

z′3 = B−1

(

λrz1e
iθ + z3 −

6σa3µ5

b3ν4
r2e−8iθ

)

= 0,



















B =
λm√
µν

,

z6 = −3σa2µ4

b3ν3
re−7iθ, z7 = −aµ2

bν
re−3iθ .

(6.14)

In both models, z′2, z
′
3 should be viewed as linear redefinitions of z1, z2, z3 with θ fixed. The

normalization factors A and B is used to make the field redefinition (z1, z2, z3) → (z′1, z
′
2, z

′
3)

a unitary transformation so that the Kähler potential remains a minimal form.

These models, although have non-generic R-charge assignment, do have a wide range

of parameters. All needs to be satisfied is just the condition (6.9). Coupling to one of

many candidate SUSY mediation and SSM models, the possibility of tree level R-symmetry

breaking opens up many interesting directions for model building and phenomenology.
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